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The influence of the surface elastic constant K3 on director fluctuations in nematic liquid crystals is
discussed. An explicit expression for the correlation function in the case of the homeotropically aligned
cell is presented. It is shown that in this case K3 changes the anchoring strength from W, to
K3 W, /(K33 —K ;) where K3 is the Frank constant. The dependence of the angular distribution of the
light-scattering intensity on K ;3 and W, is analyzed. A possibility of measuring K3 by means of an op-

tical experiment is discussed.

PACS number(s): 61.30.Cz, 68.10.Cr, 68.35.Md, 42.25.Fx

Physical properties of nematic liquid crystals are of in-
terest from the fundamental as well as practical point of
view. Studies of such systems require detailed accounting
for surface phenomena. The starting point of the descrip-
tion is an expression for the free energy as a function of
the director n. There are two reasons why the behavior
of a nematic liquid crystal in a confined volume differs
from an infinite sample. First, there is an interaction be-
tween the confining surface and the director, which gives
rise to a surface free energy. Second, there are surface
elastic contributions to the free energy, which are charac-
terized by the surface elastic constants K,, and K3, that
are negligible in the case of an infinite sample. Although
the surface elastic constants were introduced long ago,
measurements of the saddle-splay elastic constant K,
were made only recently [1]. According to the
Landau-—de Gennes expansion of the free energy in terms
of the tensor order parameter, the difference between the
splay and bend elastic constants K, —K;; and the
unzero splay-bend elastic constant K,;; appear in the
same approximation [2]. In most nematic liquid crystals
(3], K53 >K,, is realized. The ratio of the elastic con-
stants of nematic liquid crystals has been calculated using
a simple inner-field model. The obtained result is
K,,:K,4:K13=11:—9:—6 [4]. Hence there is no reason
to consider a priori K |5 to be equal to zero. Unfortunate-
ly, until now there are no experimental determinations of
K ;. An attempt to measure K;; has been made by the
authors of Ref. [5]. Only the upper limit of |K ;| for
nematic 7CB has been determined. It has been shown}

that |K,3/ <0.7K;;. All evaluations of K,; based on
theories, which require a minimization of the free energy,
contain a serious difficulty. The Euler-Lagrange
differential equation, which is only an obligatory condi-
tion, does not provide the extremum, when K is incor-
porated into the expression for the free energy [6]. A dis-
tortion of the director field in a few molecular layers near
the boundary surface is expected in the case if the surface
director is obliquely oriented with respect to the surface
normal [7].

The aim of this paper is to provide a theoretical
analysis, which is not connected with the variational
problem and can provide a method to measure K,; by
means of an optical experiment. It is known that a
thermal fluctuation spectrum in a thin sample of aligned
liquid crystal depends on the surface contribution to the
free energy. This dependence modifies the angular distri-
bution of the scattered light intensity [8]. The mixed
splay-bend contribution is commonly omitted due to a
weakness of deformations [1]. This cannot be done when
short-wavelength fluctuations are considered. In this
Brief Report the correlation function of the fluctuations
including K ;; and the anchoring strength is presented for
a homeotropic aligned nematic layer. The light-
scattering intensity is analyzed.

Let the homeotropic aligned nematic layer be confined
between the two planes situated at z==%L/2 in the
Cartesian coordinate system. The starting point of the
description is the expression for the energy, which con-
tains the surfacelike terms

F= % fd3r[Kn(divn)2+K22(n~curln)2+K33(n><curln )2— K ,,div(n X curln+n divn) + K 3div(n divn) ]

W,
+ T" [ dr [n¥r,,L/2)+nkr,~L/2)],

where n, and r, are the in-plane components of n and r.
The last term, proposed by Rapini and Papoular [9], ac-
counts for the surface anchoring, which is assumed to be
the same at both sides. Furthermore, we assume the
equilibrium director n° to be normal to the surfaces. This
assumption is equal to one that a homeotropically aligned
cell exists and does not contradict the statement made in
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(1)

—
Ref. [7]. Let us consider only small fluctuations of the
director &n(r)=n(r)—n° Since n is a unit vector, only
two components, namely, 8n, and Sny, are independent.
The aim is to calculate the correlation function
Gaﬂ(rl—r'l,z,z’)=(Sna(r)Snﬂ(r')). Here the statistical
average ( ) is taken with respect to dn(r), i.e.,
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where AF is the deviation of the free energy associated
with 8n(r). Using the Gaussian approximation we must
keep the quadratic contributions to AF and drop the oth-
ers. Equation (1) allows one to obtain the expression

1 L2 .
AF=- [, [ i) _L/zdz[Ku(d1v8nl)2+K22(8x8ny—aySn,, )*—K,6n,-328n, ]

+ W,[6n3(r,,L /2)+8n%r;, — L /2)]

+(K33 _K13 )[ﬁnl(l‘l,L /2)'328111(1‘1,[, /2)—8111(1'1, '—L /2)'325n1(rl, —L /2)] ] . (3)

Such terms as 3, 6n(r,,+L /2) and 3,6n(r), =L /2) have
been omitted in Eq. (3), since they are small and therefore
negligible, when the thickness L is much smaller than the
extension of the sample in the xy plane. The term pro-
portional to K,, in Eq. (1) does not effect AF for small dn
due to this contribution being negligible by the same ar-
gument. It should be noted that if we used the common
assumption (8n-n°)=0, we would get a wrong contribu-
tion to AF from the surfacelike terms and the right ones
from the others. To get the right contribution one should
set n, =(1—n?)1"%

The usual routine for a calculation of the correlation
function is to take the Fourier transform with respect to r
and then to apply the equipartition theorem. Unfor-
tunately, the surface terms in Eq. (3) do not permit us to
use this theorem. The same situation is considered in
Ref. [10]. The idea of how to overcome this obstacle can
be formulated as follows. One should find a class of func-
tions 8n(r), such that AF =1(8n, 4 n) with A4 being a
self-adjoint operator acting on these functions. It does
not imply any restriction on the consideration of the fluc-
tuations, because any function can be approximated by a
function from the class with arbitrary accuracy (the
eigenfunctions of A comprise a basis). When AF is a
quadratic form, the integrals in Eq. (2) can be calculated
in standard manner, which leads to
(8n®8n)=KzTA "' If n° is an equilibrium field, 4 ~*
exists.

If the fluctuation 8n(r) satisfies the boundary condi-
tions

wén,(r,,+L /2)%43,6n,(r,+L /2)=0, 4)

with w =W,/(K;33—K3), then the contribution of the
surface terms vanishes and Eq. (3) transforms into a
quadratic form. Now it is convenient to take the Fourier
transform of én(r,z) with respect to r;:

8n(v,z)=fd2rl exp(—ir,-v)dn(r,,z) . (5
AF can be presented as the integral over v,
1
AF= d% AF, , (6
(27)? f vEN )

where AF, is the contribution to the free energy associat-

ed with the fluctuation 8n(v,z)

__1_ L2 *  *\ 7 Mx
AF,=- [ dz(nt,n))4 n |’ M
with
1 U:?Ku"‘l’;Kzz-Kssaf (Kn_Kzz)Uny l
(K“_Kzz)vxvy U;K11+UXZK22"‘K3363 ’

(8)

One can prove that the operator A acting on the func-
tions which satisfy the boundary conditions (4) is a self-

adjoint one [11]. The Fourier component G(v,z,2") of
(r,—r},2,z') must satisfy the equation
AG=kyTT8(z —2'), )

where T is the identity matrix. Without any restriction
we can assume v to be normal to the y axis and denote
the corresponding correlation function by G'(v,z,z’).
G (v,z,z') for arbitrary direction of v is a result of rota-
tion round the z axis. Combining Eqs. (8) and (9) and
taking into account the boundary conditions (4) we get
that the nondiagonal elements of the new matrix G' are
equal to zero while the diagonal elements G,(i =1,2)
must satisfy the equations

(a?—d2)G}(v,2,2')=kpT8(z —2') , (10)

with a; =(K; /K 33)!"?v. The associated boundary condi-
tions are

w65 (v, £L /2,2')+d,G(v,+L /2,2')=0 . (11)

If w is negative, Eq. (10) with the right-hand side equal to
zero has a solution from the defined class for some a;. It
means that the homeotropic alignment is not stable,
when W, and K ;; —K,; have opposite signs. When z#z’
we get zero in the right-hand side of Eq. (10). There are
only two independent solutions exp(a;z) and exp(—a;z).
The solution to this problem can be expressed through
solutions to Eq. (10) with zero right-hand side ‘! and
u'?, which satisfy Eqs. (11) whenz =L /2 and z =—L /2,
respectively [12]
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, kyT u(2u'(z') ifz>z'

Gt T —a M)~ |z iz <z 12
Now it is not difficult to find functions u'”(z). For example, the following expressions are suitable:

u'(z)=(a; Fw)expla;(z FL/2)]+(a;1w)exp —a;(zFL/2)] . (13)
Using Eq. (13) in (12), we have

G,~',~(v,z,z‘)=—M—[(af—wz)cosh[a,(z +2z')]

20;K 334,
+[(a?+w?) cosh(a;L)+2a;w sinh(a;L)] cosh[a;(z —z')]— A, sinh(a;|z —2'|)] , (14)

where
A;=(a?+w?)sinh(q;L)+2wa; cosh(a;L) .

It is easy to notice that expression (14) evolves into an expression for an infinite nematic, when the thickness L is large.
To analyze the influence of the mixed splay-bend free energy on the light-scattering process, let us consider the
director-associated fluctuations 8¢ ,4(r) of the dielectric tensor

8e,pr)=¢,(n%dng(r)+npdn,(r)), (15)

where €, =¢,—¢,, € and ¢, being the permittivities along and transverse to n. The intensity of the scattered light can
be expressed in terms of the function ( E, (r)E g (1) ), which in the Born approximation is given by

4
(EL(DEg*(1))= —(:7 fd3r’d3r"Ta7,(r,r’)T;A(r,r”)( Be,,,(r')8g,,(r""))

XESE exp[k,(r'—r")] . (16)

Here E° and k|, are the amplitude and wave vector of the incident light, 7'(r,r’) is the Green’s function for an optically
anisotropic medium, taking the boundaries into account. The detailed analysis of the multireflection and the optical an-
isotropy effects in the case of a homeotropically aligned liquid-crystal cell has already been presented [14]. We assume
the Green’s function to be one for a far zone in an infinite medium with permittivity e=(e, +¢;)/2 in order to simplify
our calculation

T 4(r,1') exp(ik|r—r1'| (8,5—5,55) (17

= 1
47|r—r'|
where k =Vew/c and s=(r—r')/|r—r'|.

Keeping in mind that ordinary waves are not scattered into ordinary ones by director fluctuations and scattering of
extraordinary waves to extraordinary ones is strongest in nematic liquid crystals [13], we consider only case where the
incident wave and the scattered waves are polarized in the scattering plane. We assume s=(sin6,,0, cos6,) and
k; =k (sind;,0, cosf;). The angles 6, and 6; show the propagation directions in the xz plane of the incident and the
scattered waves, respectively. The extraordinary scattered waves are polarized along m=( cos6,,0, — sinf,). The in-
tensity I of these waves can be written as follows:

‘/"
1=—68; momg(EER) . a8
Using Egs. (15) and (18) in Eq. (16) and carrying out the integration over |, r}, taking into account that |r| >>|r'[,|r

gives rise to

"

o*Ve] 1 prL2 L2
=Iy——— 5 sin’(6;+6,)— dz’ dz" exp —ig,(z'—z")]G},(qu22") , 19
0 A amry sin%(6; ’)L f—L/z z f_L/2 2" exp| —ig,(z'—z")]G1,(q,,2,2") (19)

where I is the incident wave intensity, the scattering vector g=ks—k;, and has components g, =k ( sinf; — sin6, ),
g,=0, and g, =k ( cosf; — cos6;); V is the illuminated volume. The correlation function in Eq. (19) is defined by Eq.
(14). The double integral in the right-hand side of Eq. (19) can be calculated analytically for arbitrary K;, K |3, and W,.
The final result is

1(6,)=I,C sin*(; +0,){(w +g)[2g7 —2wg +L (w +g)(g>+q;)] +4ge "8/ [(w?—g;) cos(Lg, ) — 2wy, sin(Lg, )]
+(g —we ¥ 2wg +2¢7 + L (w —g)(g*+g¢7)]}
X{L(g2+q22)2[(w+g)2_(w_g)Ze‘2gL]}—1 , (20)
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where
g=(Ky/K3)' %, ,
kpTVao'e?
- Kayc*amr)?

Consider separately the case of normal incidence
(6;=0). In this case the angle 6, is equal to the scatter-
ing angle. When L is sufficiently large, expression (20)
becomes the well-known expression for an infinite sample
[13],

K 3,Csin’(8,)

16,)=1p———— .
* K33‘Iz2+anf

(21)

According to Eq. (21) the I(0) (forward scattering) is
finite due to the Goldstone fluctuations. A different situ-
ation takes place in the case of the finite cell. When the
anchoring strength is not equal to zero,
(n,(q,z')n}(q.,z")) is finite at the point q,=0; there-
fore the coefficient sin%(8,) in Eq. (20) leads to zero for-
ward scattering. It happens only if §;,=0. Such a situa-
tion is described in detail in Refs. [8,14]. The intensity
angular distribution I(6,) is presented in Fig. 1 for
0,=m/4, kL =100, K, /K;;=0.7, W,=5.0X10"3
dyne/cm, and K,;/K33;=—1.0,0.0,1.0. It is seen that
the variation of the intensity with the scattering angle de-
pends strongly on the ratio K;3/K3;. The scattering
profile in Fig. 1 for K3 /K ;;=1.0 according to Eq. (4) is
that of the strong regime. This case hardly takes place in
practice because such a magnitude of K,; corresponds to
the boundary of the stability.

To estimate the possibility of measuring K ; by means
of a light-scattering experiment, it is appropriate to ana-
lyze qualitatively the variation of the intensity with W)
and K,;. One can see from the boundary conditions (4)
the introduction of the splay-bend term into the free en-
ergy leads to the change of the anchoring strength from
W, to K33 W, /(K33—K ;). Hence K3 is important only
if W, is finite. Meanwhile, the less the anchoring
strength is, the larger the range of the variation of w.
Hence the angular distribution is more sensitive to K3
for small W, than for large. Unfortunately, the anchor-
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FIG. 1. Graph of the scattered-light intensity vs angle 6; for
a homeotropically aligned sample with finite size in the z direc-
tion and finite anchoring strength. Calculation was carried out
on the basis of Eq. (20) for §,=m/4, W,=5.0X10"3 dyne/cm,
K11 /K33=0.7, K33 =10"%dyne, k =10°cm™!, L =103 cm.

ing strength must be determined by an independent ex-
periment. If the light-scattering experiment is ideal, i.e.,
it gives the precise magnitude of w, the errors of K; and
W, are related by AK ;; =AW, /w.

The presented theory is for cells homogeneous in the
xy plane. Apart from the thermal fluctuations there are
stationary inhomogeneities of the anchoring strength and
the thickness in a real cell. They also give a contribution
to the light-scattering intensity, but this contribution is
time independent and can be separated from the one of
interest by a statistical routine. The question is when can
we consider this contribution as an additive one. An ex-
act answer to this question requires a detailed analysis, a
few interesting aspects of which can be found in Ref. [15].
In a successful experiment the random deviations of the
anchoring strength and the thickness must be much less
than their average magnitudes.
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